UCCE Master Gardeners of San Joaquin County
University of California
UCCE Master Gardeners of San Joaquin County

UC Garden Blogs

Great ESA Student Debate Topic: Neonics

A sick honey bee. (Photo by Kathy Keatley Garvey)
It was great to see the Entomological Society of America (ESA) select "neonicotinoids" as a student debate topic for its recent meeting in Portland, Ore.

Bee health is a challenge, and this hot topic tied in with ESA President Frank Zalom's theme "Grand Challenges Beyond the Horizons."  Zalom, who just completed his presidential term and is now serving as past president, is a distinguished professor of entomology at the University of California, Davis, and an integrated pest management specialist.

Debate topics are always lively and this one was no exception. The teams are given eight months to practice for the 45-minute debate. The end result: their work is published in the ESA journal, American Entomologist.

 "Should the agricultural use of neonicotinoids be banned?" Graduate students from the UC Davis Department of Entomology were given the "con" side and Auburn University, Alabama, the "pro side."

From all accounts, it was a fantastic debate, with both sides making key points. The UC Davis team, captained by Mohammad-Amir Aghaee, successfully argued that a ban on the insecticides in agriculture “will not improve pollinator health or restore populations, based on current science. Neonicotinoids are important for control of many significant agricultural and veterinary pests. Part of the solution is to develop better regulations that will protect the health of pollinators and retain the use of an important IPM tool.”

UC Davis won the debate, and then went on to win the overall ESA student debate championship for the second consecutive year.

“Neonicotinoids are important for control of many significant agricultural and veterinary pests,” Aghaee said at the onset. “Part of the solution is to develop better regulations that will protect the health of pollinators and retain the use of an important IPM (integrated pest management) tool.” The team also argued successfully that neonicotinoids (also known as neonics) are not all “created equal.”

 The insecticide, chemically similar to nicotine, is implicated in the mass die-off of pollinators.  The European Union recently adopted a proposal to restrict the use of three pesticides belonging to the nenicotinoid family (clothianidin, imidacloprid and thiametoxam) for a period of two years.  In addition, the U.S. Fish and Wildlife Service announced that by January 2016, it will ban the use of seeds treated with neonicotinoid pesticides and the use of crops improved through biotechnology throughout the 150 million acres managed by the National Wildlife Refuge System.

In addition to Aghaee,  the UC Davis team included graduate students Margaret "Rei" Scampavia, Ralph Washington Jr., and Daniel Klittich. Michael Parrella, professor and chair of the UC Davis Department of Entomology and Nematology, served as their advisor.  The Auburn team, captained by Olufemi Ajayi, included Adekunle Adesanya, Julian Golec, Matt Burrows, Scott Clem and alternate Zi Ye. Associate professor David Held served as their advisor.

The protocol included a seven-minute statement by each team; cross-examinations; rebuttals; and questions from the judges and audience. 

The UC Davis team cited three main points:

  • Pesticides are IMPORTANT tools used in modern agriculture
  • Neonicotinoids were registered as reduced risk pesticide to replace the organophosphates, carbamates, and pyrethroids
  • Banning neonicotinoids would increase of use of pesticides that have known non-target effects

The UC Davis entomologists agreed that acute and chronic studies "have shown that neonics are toxic to honey bees and bumble bees (Blacquiere et al. 2012)" but argued that “all neonics are not created equal (Brown et al. 2014)." They cited “inconsistent results with field-realistic doses (Cresswell et al. 2012)" and noted that “many other factors have been documented as contributing to pollinator decline (Epstein et al. 2012).”

It's not just insecticides that are killing bees, the UC Davis team pointed out. They listed the varroa mite (Varroa destructor),  vectored pathogens, and the acaricides, antibiotics and fungicides that are directly added to the colony. They also mentioned American foulbrood and Nosema bombi; inadequate honey bee nutrition; insufficient food substitute; habitat fragmentation; land-use changes; and the increasing demand for pollination changes.

The UC Davis entomologists recommended that regulatory agencies need more thorough registration guidelines that incorporate bee toxicity data for all pesticides (Hopwood et al. 2012). This would encompass chronic toxicity, sublethal effects and synergistic effects. Another recommendation: mandate better management practices that follow IPM principles that protect bees on crops (Epstein et al. 2012). This would include banning certain application strategies, using less toxic neonicotinoids, and encompass the essential education and communication.

The UC Davis team summarized its argument with “There is NO definitive scientific evidence that neonicotinoids are the primary cause of pollinator declines. Neonicotinoids are important reduced risk pesticides for management of some of our most damaging pests. Neonicotinoids should be better regulated, not banned." They concluded: “Given the current state of knowledge, banning neonicotinoids is a premature and disproportionate response to a complex issue. This requires holistic scientific inquiry and interpretation, and cooperation among stakeholders. Any changes must be based on science rather than opinion, current trends, or fear.”

The Auburn team argued that neonicotinoids are causing the death of bees essential for pollinating our food crops, and that the use of neonicotinoids should end. They outlined six key points:

  • Critical time for pollinators in the United States
  • Lethal and sub-lethal effects
  • Prevalence and exposure
  • Effects on other pollinators
  • Risk-assessment
  • Food Quality and Protection Act (FQPA) as a precedent

Expanding on the fact that this is “a critical time for pollinators in the United States,” the Auburn team pointed out that honey bees pollinate $15-20 billion worth of crops in the U.S., and $200 billion worldwide; that approximately $3 billion worth of crop pollination services are provided by native bees; and that CCD likely has many contributing factors but many of those are enhanced by neonicotinoids. They said that the honey bee population is declining. In 1947, the United States had 6 million bee colonies and today, it's down to 2.5 million.

The Auburn team keyed in on lethal and sublethal effects of neonics:  synergistic interactions with other pesticides, including DMI (demethylation inhibitor) fungicides; increased susceptibility to pathogens (Nosema spp.); decrease in foraging success; decrease in overwintering queen survival; learning impairment consequences; and reproductive inhibition. They also called attention to prevalence and exposure to neonicotinoids. They discussed the neonicotinoid residues found on bee-pollinated crops and plants by various means of exposure: seed coating; foliar spray, soil drench, trunk injections; length of residue (soil vs. foliage and length of bee exposure); and single exposures resulting in season-long impacts. They also said the multiple means of exposure due to application can lead to multiple routes of exposure within bees: via pollen, nectar, guttation fluid and extrafloral nectaries.

In their concluding statement, the Auburn team said that current tools for risk assessment may not be adequate; and that limiting neonicotinoid use will not harm agriculture--"it will open the door for more sustainable agriculture and new insecticides." They emphasized that we must save our pollinators, especially in the United States. "The United States is a special case--globally there is an increase in bee colonies; however, the United States is at a critical point at which bee pollination services are being threatened irreversibly."

One of the several swaying arguments that led to UC Davis winning the debate was that not all neonics are created equal, and thus, they should not all be lumped together as "an equal" and all be banned.

The UC Davis team received a $500 cash award, a plaque and a perpetual trophy engraved with UC Davis. ESA president Frank Zalom presented the awards.

Next year's ESA meeting takes place Nov. 15-18 in Minneapolis. Its theme, chosen by ESA President Phil Mulder, professor and head of the Department of Entomology and Plant Pathology at Oklahoma State University, is "Synergy in Science: Partnering for Solutions." He says that the theme "represents a collaborative effort with the other societies, but genuinely keeps us focused on our three strategic principles; 1) our social responsibility to develop ALL members, 2) exploring global partnerships and relationships within our science, and 3) expanding our influence around the world to maximize the impact that entomology has on improving the human condition and our knowledge of the world around us."

The UC Davis team included (from left) Margaret “Rei” Scampavia, Ralph Washington Jr., Jenny Carlson, captain Mohammad-Amir Aghaee and Danny Klittich. At far right is ESA president Frank Zalom of UC Davis who presented the team with its award. (Photo by Trav Williams of Broken Banjo Photography)
The UC Davis team included (from left) Margaret “Rei” Scampavia, Ralph Washington Jr., Jenny Carlson, captain Mohammad-Amir Aghaee and Danny Klittich. At far right is ESA president Frank Zalom of UC Davis who presented the team with its award. (Photo by Trav Williams of Broken Banjo Photography)

The UC Davis team included (from left) Margaret “Rei” Scampavia, Ralph Washington Jr., Jenny Carlson, captain Mohammad-Amir Aghaee and Danny Klittich. At far right is ESA president Frank Zalom of UC Davis who presented the team with its award. (Photo by Trav Williams of Broken Banjo Photography

The Auburn University team included (from left) alternate Zi Ye, and members Carl Clem, Julian Golec, Adekunle Adesanya, Matthew Burrows, and Olufemi Ajayi, captain.
The Auburn University team included (from left) alternate Zi Ye, and members Carl Clem, Julian Golec, Adekunle Adesanya, Matthew Burrows, and Olufemi Ajayi, captain.

The Auburn University team included (from left) alternate Zi Ye, and members Carl Clem, Julian Golec, Adekunle Adesanya, Matthew Burrows, and Olufemi Ajayi, captain.

Posted on Wednesday, December 17, 2014 at 4:14 PM

Excluding Migratory Birds from Buildings

Figure 1. Damage caused by cliff swallows and their nests.

[Article originally appeared in the November 2014 issue of the Retail Nursery & Garden Center IPM News] Although urban areas are important habitats for migrating birds, birds can also quickly become a nuisance or economic issue when they begin...

Posted on Wednesday, December 17, 2014 at 10:58 AM
Tags: birds (2), exclusion (1), IPM (8), migratory (1), Pest Notes (26)

Why Bees Are Disappearing and What You Should Know

Matan Shelomi
If you should ask Extension apiculturist (emeritus) Eric Mussen of the University of California, Davis, whether he believes that neonicotinoids are the primary cause of colony collapse disorder (CCD), he will say answer you fair and square: "No, they're not the primary cause of CCD."

Mussen, who retired in June after 38 years of service, says "Neonics are only one of the classes of pesticide residues that we frequently find in analyses of adult bees, beeswax and stored pollens. We encounter CCD in colonies in which no neonicotinoid residues can be found, and we find colonies surviving year after year with measurable residues of neonicotinoids in the hives.  Obviously, neonicotinoids do not appear to be ''the primary' cause of CCD."

Enter Matan Shelomi, a young, thoughtful and articulate entomologist who frequently answers questions on Quora. Huffington Post picked up his comments on Quora--What's the deal with the Bees?--about our bee-leagured bees. (Quora, launched by Harvard students, is a site where you can ask questions and get answers, and Shelomi answers plenty of them and quite well. A couple of years ago he tied for a first-place Shorty Award, the social media-equivalent of an Oscar.)

But first, more about Matan Shelomi. He's a Harvard graduate who received his doctorate in entomology this year from UC Davis, studying with major professor Lynn Kimsey, director of the Bohart Museum of Entomology and UC Davis professor of entomology. He is presently a postdoctoral researcher at the c in Jena, Germany. It's a two-year position funded by a National Science Foundation Postdoctoral Research Fellowship in Biology. "My work is a continuation and expansion of my doctoral research at Davis: I am studying the endogenous cellulases and pectinases of the stick insects (Phasmatodea). By taking insect genes for these enzymes and expressing them in insect cell lines, we can quantitatively test the function of these genes and try to determine what role they play in the living insect and how they evolved."

European colonists brought the honey bee to what is now the United States in 1622. (Photo by Kathy Keatley Garvey)
So, what IS the deal with bees? Shelomi, like many entomologists, hears the same questions:  "Are they in trouble?" "Why are they disappearing?" "How can I help?" Some firmly believe that "It's obviously GMO's!" or "'We must ban neonicotinoids!" Some dissenters become activists: "How do we stop the corporations that are killing bees?"

Shelomi keyed in on those questions and more after hearing "a great talk by the venerable Dr. May Berenbaum, a wonderful entomologist and effectively the scientific spokesperson about Colony Collapse Disorder (CCD), the technical term for the phenomenon of vanishing bees. So I present here for you the current state of knowledge on CCD: its history, its causes, and what we can do so stop it." Berenbaum, professor and head of the Department of Entomology at the University of Illinois, is in line to be president of the 7000-member Entomological Society of America.

"CCD does not have one cause," Shelomi emphasized. "There is no one chemical to ban or one company to censure or one critter to eradicate. Instead, CCD is the product of several factors whose whole is deadlier than the sum of its parts: a perfect storm of biological and cultural issues that are too much for the already genetically weak honeybees to handle. However, honeybees and bees themselves are not going extinct anytime soon."

Shelomi noted that honey bees are not native to America. "European honey bees were imported to the United States a few centuries ago, where they adapted well to the local plants. Without bees, certain crops (most notably almonds) could not be produced."

A backlit worker bee. (Photo by Kathy Keatley Garvey)
"Beekeeping is not easy, however," he acknowledged. "Like all animals, bees get sick, and like all farmers, beekeepers will do whatever is necessary to keep their bees healthy and cure or prevent any problems. The biggest bee problem was foulbrood, a bacterial disease where the larvae (baby bees) turn into a disgusting, brown goop. To keep their baby bees from liquifying, beekeepers began to use antibiotics. There's also a fungus called Nosema that can destroy entire colonies, so beekeepers began using fungicides. The worst is the Varroa mite, Varroa destructor, an arachnid that attaches to the outside of bees and sucks their blood. That's bad enough (hence their name: destructor), but it gets worse. These wounds can become infected by bacteria, fungi, and viruses, including Deformed Wing Virus (DWV) which is actually spread by the Varroa mite. Varroa mites were accidentally brought into the US in 1987 from an Asiatic A. cerana, and have spread to most of the world (except Australia... for now). To control it, beekeepers began spraying the hives with miticides too."

"Beekeeping practice also changed remarkably in the past century. Beekeepers realized the market for pollination, and began to transport their hives around the country following the crop seasons, first by rail and then by truck. The demand for bees was higher than the supply, however. In the USA, the Almond Board successfully lobbied Congress to allow the importation of bees from Australia, which was illegal at the time to prevent the importation of foreign bee diseases. As the world changed and more wild land was converted to agricultural land, then agricultural land to urban land, the amount of food for bees decreased. The natural diet of bees is honey and bee bread, which is fermented pollen. Fewer wild flowers meant less natural food for the bees, requiring other sources. To keep their bees alive, beekeepers started feeding sugar solutions to bees, including high fructose corn syrup."

Then came CCD. "In 2006, many beekeepers across the USA began to report high losses of bees. Not deaths, but losses: the worker bees would just vanish, leaving the queen and brood behind. This is very unusual: honey bees don't leave their home and family behind like that. With the workers gone, the hive soon followed. It soon became evident that this was a nationwide problem, and one that eventually spread to Europe too. Because of the immense importance of bees in agriculture, groups from all over the US worked together, and solving the case of Colony Collapse Disorder became a priority."

Honey bee nectaring lavender. (Photo by Kathy Keatley Garvey)
Unfortunately, the blame game surfaced. "Organizations that were against genetically modified organisms blamed GMOs. Organizations that were against the government blamed the government. Contrail conspiracy theorists said the government was spraying things. Alien abduction activists said aliens were taking the bees. Some people blamed cell phones. Some blamed Osama bin Laden. One theory was that the US government was using soviet mind control technology against Americans to raise support for the Iraq War, and the American bees were also affected because Russian bees were not affected. All of these accusations came with calls for research to prove their 'theories,' though I doubt anyone who rushed to judgment like that would accept evidence that proved them wrong. Indeed, every claim mentioned above, from GMOs to cell phones, is wrong. We know for a fact that CCD is not caused by GMOs, cell phones, aliens, vehicle grilles, UV lights, EM radiation, terrorists, communists, capitalists, etc. We have no evidence for those theories (and ample evidence against some of them), and neither do the people who promote them. (Hint: If a website is claiming to show you the "real news" or the "facts they don't want you to know," it is almost certainly unreliable). So what does the research actually say?"

In his Quora answer, Shelomi discusses research findings and new research underway.  "Here is perhaps the biggest finding from the honey bee genome research: Honey bees are naturally lacking in immunity and detoxification genes. Compared to other insects, bees lack many natural defenses! Namely, they have fewer glutathione-S-transferases, carboxylesterases, and cytochrome P450's, which are the proteins animals (including humans) use to break down toxins. Bees eat pollen and honey, which are hardly toxic. In the millions of years of their evolution, they have lost many of these genes for defense, which means all honey bees are naturally weakened against diseases and chemicals."

Honey bee heading toward a tower of jewels, Echium wildpretii. (Photo by Kathy Keatley Garvey)
"How do bees survive, then? Well, they do still have a few P450's and other detox genes. Plus, they have a secret weapon: their food. Pollen contains several compounds that upregulate detox and immunization genes. That is, when bees eat pollen-containing food like bee bread or honey, they produce more of the proteins that defend against pathogens and metabolize toxic compounds! Since the natural diet of a bee is honey and bee bread, both of which contain pollen, they still have some defenses. (The same applies for humans, by the way: if you eat healthier food, your immunity improves.)"

So, bottom line? "I'll give you a hint: it's not one thing," Shelomi wrote. "No matter what you are reading, if you find any source that names only one cause for CCD -- a single chemical, a single pesticide, a single company, a single country-- then you should stop trusting that source. On anything. Ever. Science doesn't work that way, and, no, there is no one cause for CCD, nor is there one solution. Anyone who says otherwise is either pushing a certain viewpoint on you or hasn't done there research. Here's the big reveal."

When you get a chance, read his entire essay and take note of his summary: "...CCD happens because bees have a naturally poor immunity to disease and to chemicals, both of which they are exposed to at higher rates and often together, and that immunity is made worse due to poor diet and stressful conditions. There is no one cause, nor is there one solution."

What we can do to help the bees? "Two things. Plant flowers that bees like in your garden, if you have one. Help undo the damage of habitat loss by giving bees a source of food on your property. The second is to support your local beekeeper by buying local honey, if appropriate. Go to a farmers' market or otherwise get the honey from someone raising bees nearby. It will help them out, and you can ensure you are getting real honey and not laundered stuff."

Shelomi is spot on when he says that "the best thing you can do is stay informed... and that doesn't mean finding one source of information and trusting them blindly. To stay informed means you will always need new information, and are never satisfied. It means always doubting every new news story that pops up, especially if it seems too good to be true or claims to 'finally' answer a question. It means don't confuse a conspiracy theory website or an anti-agrotech blog, or even a news report, for actual scientific data. Nor should you trust one scientific paper above all others, especially if it's a single study and not a meta-analysis. Science is ever changing: look at how much our knowledge of bees changed since 2006, how many theories were tested, championed, then abandoned as new evidence came up. Even all I've posted here may one day change (though it's pretty well accepted so far). The story of the honey bees isn't over yet... but I promise it will not have a grand finale or a single climax, but rather will be complex and full of intertwining characters, and the ending, though perhaps not as spectacular, will be much more satisfying."

Excellent advice. Stay aware. Stay informed. Stay tuned.

Matan Shelomi, wearing a UC Davis entomology shirt, stands in front of the Reichstag in Berlin.
Matan Shelomi, wearing a UC Davis entomology shirt, stands in front of the Reichstag in Berlin.

Matan Shelomi, wearing a UC Davis entomology shirt, stands in front of the Reichstag in Berlin.

Noted entomologist May Berenbaum lectured May 20 at UC Davis on disappearing bees and then visited the Department of Entomology and Nematology's bee garden. With her (from left) are UC Davis bee authorities Robbin Thorp, Brian Johnson and Eric Mussen. (Photo by Kathy Keatley Garvey)
Noted entomologist May Berenbaum lectured May 20 at UC Davis on disappearing bees and then visited the Department of Entomology and Nematology's bee garden. With her (from left) are UC Davis bee authorities Robbin Thorp, Brian Johnson and Eric Mussen. (Photo by Kathy Keatley Garvey)

Noted entomologist May Berenbaum lectured May 20 at UC Davis on disappearing bees and then visited the Department of Entomology and Nematology's bee garden. With her (from left) are UC Davis bee authorities Robbin Thorp, Brian Johnson and Eric Mussen. (Photo by Kathy Keatley Garvey)

Posted on Tuesday, December 16, 2014 at 5:17 PM

Sharing a Mexican Sunflower

Two's company. Three's a crowd?

Not necessarily.

Sometimes we wish it were half a dozen.

Last July we were admiring two newly emerged Gulf Fritillary butterflies on  Mexican sunflowers (Tithonia) when a Western Tiger Swallowtail fluttered down, seemingly out of nowhere, to occupy the same sunflower as one Gulf Frit.

The Gulf Fritillary (Agraulis vanillae) and the Western Tiger Swallowtail (Papilio rutulus) eyed each other for a few seconds. Then in the way of the West ("This town isn't big enough for the both of us") the tiger spread its wings and took off.

A Western Tiger Swallowtail readies for a landing on the same flower occupied by a Gulf Fritillary. (Photo by Kathy Keatley Garvey)
A Western Tiger Swallowtail readies for a landing on the same flower occupied by a Gulf Fritillary. (Photo by Kathy Keatley Garvey)

A Western Tiger Swallowtail readies for a landing on the same flower occupied by a Gulf Fritillary. (Photo by Kathy Keatley Garvey)

Two's company. Three's a crowd? (Photo by Kathy Keatley Garvey)
Two's company. Three's a crowd? (Photo by Kathy Keatley Garvey)

Two's company. Three's a crowd? (Photo by Kathy Keatley Garvey)

Posted on Monday, December 15, 2014 at 5:42 PM

Everyone Wins! (Except the Spotted-Wing Drosophila)

This is a spotted wing drosophila, a male. (Photo by Martin Hauser, California Department of Food and Agriculture)
It's great to see Jessica West, a member of  Joanna Chiu's molecular genetics lab in the UC Davis Department of Entomology and Nematology and a member of the Research Scholars Program in Insect Biology. receive the undergraduate student award in the President's Global Food Initiative Student Fellowship Program, sponsored by the UC Office of the President.

Jessica, who is majoring in biochemistry and molecular biology, works in the Chiu lab on the Spotted Wing Drosophila (Drosophila suzukii or SWD), a serious pest of fruit crops. In collaboration with scientists in the U.S. and around the world, including Frank Zalom, UC Davis professor of entomology, West is surveying populations of SWD using next-generation sequencing to determine the extent of possible insecticide resistance.

“By correlating her results to insecticide bioassay data, she can start to understand the mechanisms of developing resistance and use this information to help the agricultural industries manage SWD in a more sustainable manner,” said Chiu, an assistant professor. 

The UC Global Food Initiative “is a commitment to apply a laser focus on what UC can do as a public research university, in one of the most robust agricultural regions in the world, to take on one of the world's most pressing issues," said UC President Janet Napolitano. This includes research related to food security, health and sustainability.

West received a $2500 stipend. The selection committee said “Jessica's ability to articulate a novel, hypothesis-driven research idea and follow it up with a detailed plan stood out from the rest.” 

Said Chiu: “Jessica wrote an outstanding research proposal, detailing how her project can contribute to the mission of the UC Global Food Initiative.”

Molecular geneticist Joanna Chiu
West grew up in the city of Shasta Lake and graduated as the valedictorian of the Class of 2012, Central Valley High School. A first-generation college student, West has received a number of scholarships at UC Davis, including the Susie Voorhies Memorial Scholarship (2012-13), Provost's Undergraduate Fellowship (May 2014) and the Regents Scholarship (May 2014). She expects to graduate from UC Davis in 2016 and pursue a career in research 

West applied for--and received--membership in the Class of 2013, Research Scholars Program in Insect Biology (RSPIP), which was organized by three UC Davis Department of Entomology faculty (Jay Rosenheim, Louie Yang and Joanna Chiu) to provide undergraduates with closely mentored research experiences in biology. The program's goal is "to provide academically strong and highly motivated undergraduates with a multi-year research experience that cultivates skills that will prepare them for a career in biological research and useful for students whose career goals will take them to medical school, veterinary school, or graduate programs in any biological sub-discipline."

Undergraduates can easily feel like they are lost in the crowd, Chui said, and rarely get close mentorship from faculty or other research staff.  The RSIBP program fills that bill. “It is highly competitive and being selected is not an easy feat in itself,” Chiu said. West was one of eight students from the pool of 50 applicants selected.

Insects can be used as model systems to explore virtually any area of biology (population biology; behavior and ecology; biodiversity and evolutionary ecology; agroecology; genetics and molecular biology; biochemistry and physiology; and  cell biology).

The Chiu lab collaborates with the Zalom lab and with research groups at Oregon State University, Washington State University, North Carolina State University, University of Georgia, and Cornell University to develop pest management strategies to combat SWD. Most drosophila flies feed on spoiled fruits, but SWD prefers fresh fruit (berries and soft-skinned fruits). The national crop loss has been estimated at more than $700 million annually.

“As a result, to control pest population and reduce crop loss, growers now rely on preventive applications of broad-spectrum neuroactive insecticides,” Chiu explained. “The selection pressure for insecticide resistance is therefore extremely high and will likely lead to resistance development in SWD, which threatens the sustainability of these high value crops.”

“Our laboratory has already set up a large network of collaborators all over the world to support this project,” Chiu said. “Jessica regards this project as an opportunity to explore new research areas, while contributing to an urgent food crisis as the crop industries and growers all over the world are becoming gravely concerned. “

Jessica West and her mentor, Joanna Chui, are a good fit. And that should mean bad news for the spotted wing drosophila.

UC Davis undergraduate student Jessica West, who is majoring in biochemistry and molecular biology, has just received the UC Davis undergraduate award President's Global Food Initiative Student Fellowship Program. (Photo by Kathy Keatley Garvey)
UC Davis undergraduate student Jessica West, who is majoring in biochemistry and molecular biology, has just received the UC Davis undergraduate award President's Global Food Initiative Student Fellowship Program. (Photo by Kathy Keatley Garvey)

UC Davis undergraduate student Jessica West, who is majoring in biochemistry and molecular biology, has just received the UC Davis undergraduate award President's Global Food Initiative Student Fellowship Program. (Photo by Kathy Keatley Garvey)

Posted on Friday, December 12, 2014 at 8:32 PM

Next 5 stories | Last story

Webmaster Email: mdhachman@ucdavis.edu